Chemical Communications

Number 7 1990

Dioxygen Fixation by a Cobalt(ii)-Ammoniacal Complex and its Electroreduction in a Nafion Coated Solid-state Three-electrode Cell

Armand Bettelheim," Rachel Harth, Dan Ozer, and Raphael Ydgar

Nuclear Research Centre-Negev, P.O. Box 9001, Beer-Sheva 84 190, Israel

The reduction potential for the Co^{ll}-NH₃-O₂ system at a glassy-carbon electrode in a solid-state Nafion-coated cell is about 800 mV more positive than obtained for a glassy-carbon-Nafion film electrode when immersed in an aqueous solution containing Coⁱⁱ, ammonia, and dioxygen (+0.3 and -0.5 V vs. Ag/AgCI, respectively); this is attributed to two different electrode reactions: reduction of $[(NH_3)_5Co-O_2-Co(NH_3)_5]^{4+}$ in the absence of a contacting liquid electrolyte solution and free O₂ in aqueous Co^{II}-ammoniacal solution.

We recently described the catalytic properties towards dioxygen reduction of cobalt **tetrakis(o-aminopheny1)porphyrin** [abbreviated Co(tapp)]. This catalyst was electropolymerized onto glassy-carbon (GC) and the modified electrodes were studied in aqueous solutions.' We also showed that when using ionic conducting polymers such as polyethylene oxide $(PEO)²$ or Nafion,^{3,4} it is possible to conduct the electrochemistry of various redox couples in the absence of a contacting electrolyte solution and in a macro electrode configuration, provided that the set-up is exposed to a wet gas (such as $Ar-H₂O$). Polymeric films of Co(tapp) exposed to a Ar-H20 bathing gas in the Nafion solid-state configuration exhibited two $\text{Co}^{\text{III}}/\text{Co}^{\text{II}}$ waves at $+0.37$ and $+0.20$ V *vs.* Ag/AgCl. A substantial current increase was observed when the bathing gas was replaced by air $-H_2O$ and the half-wave potential for the catalytic reduction of dioxygen (+0.25 V *vs.* Ag/AgCl) was similar to that obtained for the polymeric Co(tapp)/GC-modified electrodes immersed in an air-saturated $0.5M H_2SO_4$ solution.¹

It is well known that many Co^{II} complexes take up molecular dioxygen from organic and aqueous solutions .5 The best known dioxygen adduct is $[(NH₃)₅Co-O₂-Co(NH₃)₅]⁴⁺$. The reversibility of the reaction of the Co^H ammoniacal complexes with dioxygen has been investigated by numerous authors using spectroscopic, potentiometric, and kinetic methods [reactions (1) and (2)].^{ϵ}

$$
2Co(NH_3)_5(H_2O)^{2+} + O_2 \rightarrow [(NH_3)_5Co-O_2-Co(NH_3)_5]^{4+} + 2H_2O \quad (1)
$$

2Co(NH₃)²⁺ + O₂

$$
2Co(NH_3)\delta^{2+} + O_2 \rightarrow [(NH_3)_5Co-O_2-Co(NH_3)_5]^{4+} + 2NH_3
$$
 (2)

In the present work, we have studied reduction of dioxygen in the presence of the Co^{II}-ammonia system using a Nafion solid-state configuration. As in the previous study,⁴ the arrangement consisted of two electrodes (0.47 cm2) cast in polyester and serving as working and auxiliary electrodes. The gap between the two electrodes was about 0.5 mm. A Nafion tube containing a polymeric Ag/AgCl reference electrode3

was pressed over the two other electrodes and a Nafion film was cast by spreading 100 μ l of the 1% polymer solution over the electrodes followed by drying in air at room temperature.

Figure 1 shows the cyclic voltammograms obtained when the three-electrode solid-state configuration contains Co^{II} ions in the Nafion film and is exposed to Ar-H₂O and O_2 -H₂O bathing gases [curves (a) and (b) , respectively]. In the absence of ammonia, dioxygen reduction occurs at negative potentials $[E_{\rm p} \sim -0.4 \text{ V}$ *vs.* Ag/AgCl, curve (b)]. However, when NH₃ is introduced into the bathing gas (by adding NH40H to the solution through which the bathing gas passes), a cathodic peak appears with E_p +0.3 V *vs.* $\widetilde{Ag}/AgCl$ [curve (c)]. This peak almost completely disappears when O_2 is replaced by an inert gas, such as Ar [curve (d)]. It can also be seen from Figure 1 that high anodic currents are obtained for the oxidation of $NH₃$ (or $NH₄OH$) which are not observed (in the $+0.7$ to -0.4 V potential range) in the absence of NH₃ [curves (d) and (a), respectively].

Similar experiments were conducted using the modified electrode concept, *ie.,* using a GC electrode with a Nafion film (obtained by dipping in a 1% Nafion solution and air drying the electrode) which was then immersed in a 0.1 **^M** $NaClO₄$ solution. The cyclic voltammograms obtained in the absence and presence of Co^{II} ions in the deaerated 0.1 M NaC104 solution are shown in Figure **2** [curves (a) and (b) respectively]. A broad oxidation wave at $+0.3$ V *vs.* Ag/AgCl is observed when NH40H is added to the deaerated solution [curve (c)]. When some air is introduced in the solution, a peak for dioxygen reduction appears with E_p -0.5 V *vs.* Ag/AgCl [curve (d)]. This potential is similar to that obtained for dioxygen reduction in the ammoniacal–NaClO₄ solution in the absence of *Co"* ions (not shown in Figure *2).* This seems to indicate that, as concluded from similar experiments conducted with uncoated electrodes in Co^{II}-ammoniacal solutions,7 the species being reduced at the electrode is free O_2 in labile equilibrium with the $[(NH₃)₅Co-O₂-Co(NH₃)₅]⁴⁺ complex.$

The present results, therefore, suggest that the electrochemistry of the $Co^H-NH₃-O₂$ system in the absence of a contacting electrolyte differs from that of the same system

Figure 1. Cyclic voltammograms (20 mV/s) for a Nafion-GC film electrode exposed to (a) $Ar-H_2O$, (b) O_2-H_2O , (c) $O_2-NH_3-H_2O$, and (d) Ar-NH2-H20 bathing gases. *Inset:* peak current for dioxygen reduction as function of the Co^{II} surface coverage when the cell is exposed to $O_2-NH_3-H_2O$.

when tested in an aqueous solution. While O_2 is directly reduced in electrolyte solutions containing cobalt-ammoniacal complexes, reduction of the $(NH₃)₅Co-O₂-Co(NH₃)₅$ complex is achieved using the solid-state ionic conductive polymer configuration. Since the experiments with the Nafion-modified electrodes were conducted in the presence of a high Co^{II} concentration in the solution $(10^{-2}$ M), it is improbable that the cobalt-dioxygen adduct is reduced because of a higher Co^{II} content of the Nafion membranes in the solid-state system.

The catalysis of dioxygen reduction is much more effective in the Nafion solid-state configuration than it is in aqueous solutions [curves (c) in Figure **1** and (d) in Figure **2,** respectively]. Dioxygen reduction in the solid-state cell occurs at a potential 800 mV more positive than obtained when O_2 is reduced at a modified Nafion electrode immersed in an aqueous Co^{IL}-ammonia solution $(+0.3 \text{ and } -0.5 \text{ V})$ vs. Ag/AgCl, respectively). Activation of molecular dioxygen **by** transition-metal complexes has been suggested to occur *via* a one-electron, two-electron, and four-electron-transfer, which will generate superoxide ion, peroxide ion, or oxide ion in aprotic media.8,9 We have previously shown that a large amount of H_2O_2 is produced during O_2 reduction catalysed by

Figure 2. Cyclic voltammograms (20 mV/s) for a Nafion-modified electrode immersed in a deaerated $0.1M$ NaClO₄ solution in the absence $[curve (a)]$ and presence of 10^{-2} M Co^H ions $[curve (b)]$. Curve (c) is as in (b) after adding 2 M NH40H and dearating the solution. Curve (d) is as in (c) after introducing some air.

Co(tapp) present in a PEO solid-state four-electrode electrochemical ce11.2 Preliminary experiments, conducted with a similar configuration, show considerable production of hydrogen peroxide *(ca.* 30%) for electroreduction of the $\text{cobalt-ammonia-O}_2$ adduct in the solid-state Nafion-coated cell.

This work was supported by grant No. *85-00235* from the United States-Israel Binational Science Foundation **(BSF),** Jerusalem, Israel.

Received, 26th July 1989; Corn. 9103173A

References

- 1 A. Bettelheim, B. A. White, and R. W. Murray, J. *Electroanal. Chem.,* 1987,217, 271.
- 2 A. Bettelheim, R. Reed, N. H. Hendricks, J. P. Collman, and R. W. Murray, J. *Electroanal. Chem.,* 1987, 238,259.
- 3 A. Bettelheim, R. Harth, and D. Ozer, J. *Electrochem.* **SOC.,** 1988, 135, 1041.
- 4 R. Harth, U. Mor, D. Ozer, and A, Bettelheim, J. *Electrochem. SOC.,* 1989, 136, 3863.
- 5 R. G. Wilkins, *Bioinorg. Chem.,* 1970, 100, 111.
- 6 A. G. Sykes and A. J. Weil, *Progr. Znorg. Chem.,* 1970, 13, 1.
- 7 A. Bettelheim, M. Faraggi, I. Hodara, and J. Manassen, J. *Chem. SOC., Faraday Trans. 1,* 1977, *73,* 143.
- 8 F. P. Guengerich and T. L. MacDonald, *Acc. Chem. Res.,* 1984, 17, 9.
- 9 D. T. Sawyer, E. J. Nanni, Jr., and J. L. Robert, *Adv. Chem. Ser.,* 1982, 201, 585.